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Angular Schmidt spectrum of entangled photons: Derivation of an exact formula
and experimental characterization for noncollinear phase matching
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We derive an exact computationally-efficient formula for the angular Schmidt spectrum of orbital angular
momentum (OAM) entangled states produced by parametric down-conversion (PDC). Our formula yields the
true spectrum and does not suffer from convergence issues arising due to infinite summations, as has been the
case with previously derived formulas. We use this formula to experimentally characterize the angular Schmidt
spectrum of entangled photons produced by PDC with noncollinear phase matching. We report measurements of
very broad angular Schmidt spectra, corresponding to the angular Schmidt numbers up to 229. Our work could
have important implications for OAM-based quantum information applications.
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I. INTRODUCTION

High-dimensional quantum information protocols offer
many distinct advantages in terms of security [1–3], supersen-
sitive measurements [4], violation of bipartite Bell’s inequality
[5–7], enhancement of entanglement via concentration [8],
and implementation of quantum coin-tossing protocol [9].
After it was shown that the orbital angular momentum (OAM)
of a photon provides a high-dimensional basis [10–12], the
OAM-entangled states of signal and idler photons produced
by parametric down-conversion (PDC) have become a natural
choice for high-dimensional quantum information applica-
tions. To this end, there have been intense research efforts,
both theoretically [13–19] and experimentally [20–26], for the
precise characterization of high-dimensional OAM-entangled
states produced by PDC. Although a general OAM-entangled
state requires the full state tomography for its characterization,
the experimentally relevant case of OAM-entangled states
produced using a Gaussian pump beam can be characterized
by measuring just the angular Schmidt spectrum [13,14,24],
which is defined as the probability Sl of signal and idler photons
getting detected with OAMs lh̄ and −lh̄, respectively.

The characterization of the angular Schmidt spectrum has
been a very challenging problem. On the experimental front,
several techniques have been developed for measuring the
angular Schmidt spectrum. The first set of techniques is based
on using fiber-based projective measurements [20–23,25].
However, these techniques are very inefficient because the
required number of measurements scales with the size of the
input spectrum. Furthermore, these techniques measure only
the projected spectrum instead of the true spectrum [27]. The
second set of techniques is based on inferring the spectrum by
measuring the angular coherence function [17,24]. Although
these techniques do measure the true spectrum, they either
require a series of coincidence measurements and have strict
interferometric stability requirements [24] or suffer from too
much loss [17]. More recently, an interferometric technique has
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been demonstrated that can measure the true angular Schmidt
spectrum in a very efficient single-shot manner [26]. On the
theoretical front, Torres et al. have derived a formula for
calculating the spectrum for collinear phase matching [14].
However, this formula involves a four-dimensional integration
followed by two infinite summations over the radial indices.
Although the summations have been shown to converge for
certain sets of experimental parameters, the convergence is not
explicitly proved for an arbitrary set of parameters. Moreover, it
is extremely inefficient to first calculate the contributions due
to a sufficiently large number of radial modes and then sum
them over. Subsequent studies have analytically performed
the four-dimensional integration for certain collinear phase-
matching conditions [15,16], but they still suffer from the same
set of issues due to infinite summations. There has been a
recent investigation by Zhang and Roux for the noncollinear
phase-matching condition [19]; however, the angular Schmidt
spectrum calculated in this paper is only for a given pair of
radial modes of the signal and idler photons, and therefore is
not applicable to a generic experimental situation.

Thus, although the past efforts have been able to greatly
overcome the experimental challenges in measuring the true
Schmidt spectrum, the theoretical challenge of deriving an
exact formula has so far remained unresolved. In this paper, we
derive an exact formula for calculating the true angular Schmidt
spectrum that does not suffer from the above-mentioned issues
since the infinite summations over radial modes are performed
analytically. Moreover, our formula is valid for both collinear
and noncollinear phase-matching conditions. Using this for-
mula, we report experimental characterizations of the angular
Schmidt spectrum with various noncollinear phase-matching
conditions.

II. THEORY

A. Derivation of the general formula

The state |ψ2〉 of the down-converted photons is written in
the transverse-momentum basis as [28]

|ψ2〉 =
∫∫ ∞

−∞
�(qs,qi)|qs〉s |qi〉idqsdqi , (1)
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where s and i stand for signal and idler, respectively, and
where |qs〉 and |qi〉 denote the states of the signal and idler
photons with transverse momenta qs and qi , respectively.
�(qs,qi) is the wave function of the down-converted photons
in the transverse-momentum basis; it depends on the detailed
properties of the pump field, the nonlinear crystal, and the
phase-matching condition [14,28,29]. The state |ψ2〉 can also
be represented in the Laguerre-Gaussian (LG) basis [14–17]
as

|ψ2〉 =
∑

ls

∑
li

∑
ps

∑
pi

C
ls ,ps

li ,pi
|ls ,ps〉s |li ,pi〉i . (2)

Here |ls ,ps〉s represents the state of the signal photon in the LG
basis defined by the OAM-mode index ls and the radial index
ps , etc. Using Eqs. (1) and (2), the complex coefficients C

ls,ps

li ,pi

can be written as

C
ls,ps

li ,pi
=

∫∫
�(qs ,qi)(LG)∗ls

ps
(qs)(LG)∗li

pi
(qi)dqsdqi . (3)

Here (LG)lsps
(qs) = 〈qs |ls ,ps〉 is the momentum-basis repre-

sentation of state |ls,ps〉s [14,15]. Transforming to the cylin-
drical coordinates, we write C

ls,ps

li ,pi
as

C
ls,ps

li ,pi
=

∫∫ ∞

0

∫∫ π

−π

�(ρs,ρi,φs,φi)(LG)∗ls
ps

(ρs,φs)

× (LG)∗li
pi

(ρi,φi)ρsρidρsdρidφsdφi, (4)

where qs ≡ (qsx,qsy) = (ρs cos φs,ρs sin φs), qi ≡ (qix,qiy) =
(ρi cos φi,ρi sin φi), dqs = ρsdρsdφs , and dqi = ρidρidφi .
The probability P

ls
li

that the signal and idler photons are
detected with OAMs ls h̄ and li h̄, respectively, is calculated
by summing over radial indices:

P
ls
li

=
∞∑

ps=0

∞∑
pi=0

∣∣Cls,ps

li ,pi

∣∣2
. (5)

Equations (4) and (5) were used in Refs. [14–16] for calculating
the spectra of OAM-entangled states. We note that in order
to calculate the angular Schmidt spectrum using the above
formula one needs to first choose a beam waist for the signal
and idler LG bases in Eq. (4) and then perform the summations
in Eq. (5) over a sufficiently large number of modes. As a result,
even for certain collinear phase-matching conditions, in which
the four-dimensional integral can be analytically performed
[15,16], the above formula suffers from convergence issues.

We next present the derivation of a formula for the angular
Schmidt spectrum that neither requires a beam waist to be cho-
sen nor involves infinite summations and is applicable to both
collinear and noncollinear phase-matching conditions. To this
end, we first rewrite Eq. (5) using the relation (LG)lsps

(ρs,φs) =
(LG)lsps

(ρs)eilsφs , etc., as

P
ls
li

=
∫∫∫∫ ∞

0

∫∫∫∫ π

−π

�(ρs,ρi,φs,φi)�
∗(ρ ′

s ,ρ
′
i ,φ

′
s ,φ

′
i)

×
∞∑

ps=0

(LG)∗ls
ps

(ρs)(LG)lsps
(ρ ′

s)
∞∑

pi=0

(LG)∗li
pi

(ρi)(LG)lipi
(ρ ′

i)

× e+i(lsφs+liφi )e−i(lsφ′
s+liφ

′
i )

× ρsρiρ
′
sρ

′
idρsdρidρ

′
sdρ

′
idφsdφidφ′

sdφ′
i . (6)

We then use the identity
∑∞

p=0 (LG)lp(ρ)(LG)∗
l

p (ρ ′) =
(1/π )δ(ρ2 − ρ ′2) over indices ps and pi and obtain

P
ls
li

=
∫∫∫∫ ∞

0

∫∫∫∫ π

−π

�(ρs,ρi,φs,φi)�
∗(ρ ′

s ,ρ
′
i ,φ

′
s ,φ

′
i)

× 1

π2
δ
(
ρ2

s − ρ ′2
s

)
δ
(
ρ2

i − ρ ′2
i

)
e+i(lsφs+liφi )e−i(lsφ′

s+liφ
′
i )

× ρsρiρ
′
sρ

′
idρsdρidρ

′
sdρ

′
idφsdφidφ′

sdφ′
i . (7)

After evaluating the delta function integrals and rearranging
the remaining terms, we obtain

P
ls
li

= 1

4π2

∫∫ ∞

0

∣∣∣∣
∫∫ π

−π

�(ρs,ρi,φs,φi)e
i(lsφs+liφi )dφsdφi

∣∣∣∣
2

× ρsρidρsdρi. (8)

Now, we take up the most common experimental situation in
which the OAM remains conserved during down-conversion,
that is, lp = ls + li , which for a Gaussian pump beam with
lp = 0 implies that ls = −li = l [20]. In these situations, the
down-converted two-photon state |ψ2〉 of Eq. (2) takes the
following form [13–17]: |ψ2〉 = ∑

l

∑
ps

∑
pi

C
l,ps

−l,pi
|l,ps〉s | −

l,pi〉i , which, when written with only the OAM-mode index
as the label for the state, takes the Schmidt decomposed
form: |ψ2〉 = ∑∞

l=−∞
√

Sl|l〉s | − l〉i . The corresponding an-
gular Schmidt spectrum Sl = P −l

l is the probability that the
signal and idler photons have OAMs lh̄ and −lh̄, respectively,
and using Eq. (8) it can be written as

Sl = 1

4π2

∫∫ ∞

0

∣∣∣∣
∫∫ π

−π

�(ρs,ρi,φs,φi)e
il(φs−φi )dφsdφi

∣∣∣∣
2

× ρsρidρsdρi. (9)

Equations (8) and (9) are the main theoretical results of this
paper. While Eq. (8) provides a formula for calculating the
probability P

ls
li

that the signal and idler photons are detected
with OAMs ls h̄ and li h̄, respectively, Eq. (9) calculates the an-
gular Schmidt spectrum. In contrast to the previously obtained
formulas [14–16,19], Eqs. (8) and (9) neither require a beam
waist to be chosen nor involve infinite summations. As a result,
these formulas can provide improvement of several orders
of magnitude in the spectrum computation time. Moreover,
unlike the noncollinear phase-matching results in Ref. [19],
which is applicable only for a given pair of radial modes of
the signal and idler photons, these formulas are applicable to
a generic set of noncollinear phase-matching conditions and
geometries. We note that although the above formulas do not
have any convergence issue arising due to infinite summations,
the definite integrals might have convergence issues for some
arbitrary functional form of �(ρs,ρi,φs,φi). However, we do
not expect such convergence issues for the commonly encoun-
tered forms of �(ρs,ρi,φs,φi) for collinear and noncollinear
phase-matching conditions. In order to illustrate this and to
describe our experiments presented later, we next derive the
momentum-space wave function �(ρs,ρi,φs,φi) for the case
of type-I down-conversion with a Gaussian pump beam and
calculate the angular Schmidt spectrum.
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FIG. 1. Schematic of phase matching in PDC.

B. The special case of a Gaussian pump beam

Let us consider the situation shown in Fig. 1. A Gaussian
pump beam undergoes type-I PDC inside a nonlinear crystal
of thickness L. We take the pump photon to be extraordinary
polarized and the signal and idler photons to be ordinary
polarized. The beam waist of the pump field is located at a
distance d behind the front surface of the crystal. The crystal
is rotated by an angle α with respect to the incident direction
of the pump beam, and the z axis is defined to be the direction
of the refracted pump beam inside the crystal. The angles that
the optic axes of the unrotated and rotated crystals make with
the pump beam inside the crystal are denoted by θp0 and θp,
respectively. Using Fig. 1, one can show that

θp = θp0 + sin−1(sin α/ηp), (10)

where ηp is the refractive index of the extraordinary pump
photons. By changing θp, one can go from collinear down-
conversion to noncollinear down-conversion. The wave func-
tion �(qs,qi) of the down-converted photons in the transverse-
momentum basis at the exit surface inside the crystal is written
as [14,28,29]

�(qs,qi) = AV (qs + qi)e
ikpzd sinc

(
�kzL

2

)
exp

(
i
�kzL

2

)
.

(11)

Here, again, p, s, and i stand for pump, signal, and idler,
respectively; A is a constant and sinc(x) ≡ sin x/x. We have
used kj ≡ (kjx,kjy,kjz) ≡ (qjx,qjy,kjz) ≡ (qj ,kjz), with j =
p,s,i, and �kz = kpz − ksz − kiz. The quasimonochromaticity
condition is assumed for each of the signal, idler, and pump
photons with their central wavelengths given by λs , λi , and λp,
respectively. In addition, the transverse size of the crystal is
taken to be much larger compared to the spot size of the pump
beam, ensuring qp = qs + qi . The quantity V (qs + qi)e

ikpzd

is the spectral amplitude of the pump field at z = 0, wherein

V (qs + qi) = wp√
2π

exp

(
−|qs + qi |2w2

p

4

)
(12)

is the spectral amplitude of the pump field at z = −d with
wp being the width of the pump beam waist at z = −d. We
take the expressions for kjz from Ref. [29] (a sign typo in the

FIG. 2. Experimental setup for measuring the angular Schmidt
spectrum. BBO, β-barium borate crystal; DM, dichroic mirror; IF,
10-nm wavelength-bandwidth interference filter; BS, beam splitter.

expression for kpz in Ref. [29] has been corrected here):

ksz
=

√
(2πnso/λs)2 − |qs |2,

kiz =
√

(2πnio/λi)2 − |qi |2, and

kpz
= −αpqpx +

√
(2πηp/λp)2 − β2

pq2
px − γ 2

pq2
py, (13)

where

ηp = npeγp,

γp = npo/

√
n2

po sin2 θp + n2
pe cos2 θp,

αp =
(
n2

po − n2
pe

)
sin θp cos θp(

n2
po sin2 θp + n2

pe cos2 θp

) , and

βp = nponpe(
n2

po sin2 θp + n2
pe cos2 θp

) . (14)

Here nso denotes the ordinary refractive index of the signal
photon at wavelength λs , etc. The angular Schmidt spectrum
Sl can be evaluated by substituting into Eq. (9) from Eqs. (11)–
(14). We note that the formula in Eq. (9) represents the
angular Schmidt spectrum just inside the nonlinear crystal.
Nevertheless, in situations in which α is of the order of only a
few degrees, the angular Schmidt spectrum inside and outside
the crystal can be taken to be the same.

Next, we use the experimental technique of Ref. [26] to
characterize the angular Schmidt spectrum for noncollinear
phase-matching conditions and compare our experimental
results with the theoretical predictions of Eq. (9). Figure 2
shows our experimental setup. Following Ref. [26], we first
define the measured OAM spectrum as

S̄l ≡
∫ π

−π

�Īout(φ)ei2lφdφ, (15)

where �Īout(φ) = Ī
δc

out(φ) − Ī
δd

out(φ) is the difference in the
azimuthal intensities Ī

δc

out(φ) and Ī
δd

out(φ) of the two output
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FIG. 3. (a), (b) The measured output interferograms at δ = δc and δd , respectively. (c) The difference �Ī (φ) in the azimuthal intensities
of the two interferograms. (d) The normalized measured spectrum as computed using Eq. (15) and the normalized theoretical spectrum as
calculated using Eq. (8), for α = 0.33 and θp = 28.64. (e)–(h) The corresponding plots for α = 0.45 and θp = 28.72. (i)–(l) The corresponding
plots for α = 0.73 and θp = 28.89.

interferograms recorded at δ = δc and δd , respectively, and
where δ denotes the overall phase difference between the
two arms of the interferometer [26]. In situations in which
the noises in the two interferograms are the same, it has
been shown that S̄l ∝ Sl , which implies that the normalized
measured OAM spectrum S̄l is same as the true normalized
OAM spectrum Sl [17,26].

III. EXPERIMENTAL OBSERVATIONS

In the setup of Fig. 2, an ultraviolet continuous-beam pump
laser (100 mW) of wavelength λp = 405 nm and beam-waist
width wp = 388 μm was used to produce type-I PDC inside a
β-barium borate crystal. The beam waist of the pump field was
located at d = 100 cm behind the front surface of the crystal.
The crystal was mounted on a goniometer which was rotated
in steps of 0.04 deg in order to change α and thereby θp. For a
given setting of crystal and pump parameters, output interfero-
grams and thereby the azimuthal intensities Ī

δc

out(φ) and Ī
δd

out(φ)
were recorded for two values of δ, namely, δc and δd , which
differed by about half a wavelength [26]. The recording of the
interferograms was done using an Andor Ixon Ultra EMCCD
camera (512 × 512 pixels) with an acquisition time of 16 s.
From a given pair of Ī

δc

out(φ) and Ī
δd

out(φ), �Īout(φ) was obtained
and the angular Schmidt spectrum was then estimated using
Eq. (15). In our experiments,λs = λi = 810 nm,λp = 405 nm,
and L = 2 mm. We have used the following refractive index
values taken from Ref. [30]: npo = 1.6923,npe = 1.5680, and
nso = nio = 1.6611.

Figure 3 shows the details of our measurements for three
different values of θp. For each θp, we have plotted the

measured output interferograms at δ = δc and δd , the difference
in azimuthal intensity �Īout(φ), along with the normalized
spectrum as computed using Eq. (15) and the normalized
theoretical spectrum as calculated using Eq. (9). The angular
Schmidt number was calculated using the formula Ka =
1/(

∑
l S̄

2
l ). The experimentally measured angular Schmidt

numbers along with the theoretical predictions at various θp

values have been plotted in Fig. 4. We note that for our
theoretical plots θp0 was the only fitting parameter, and once it
was chosen the subsequent θp values were calculated simply by
substituting the rotation angle α in Eq. (10). We find that the
angular Schmidt spectrum becomes broader with increasing
noncollinearity. We measured very broad angular Schmidt
spectra with the corresponding Schmidt numbers up to 229,

FIG. 4. Experimentally measured and theoretically estimated an-
gular Schmidt number Ka vs θp .
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FIG. 5. (a), (b) Theoretical dependence of the angular Schmidt
number on the width of the pump beam waist wp and crystal thickness
L, respectively.

which to the best of our knowledge is the highest ever reported
angular Schmidt number.

We find excellent agreement between the theory and ex-
periment, except for extremely noncollinear conditions, in
which case the experimentally measured Schmidt numbers
are slightly lower than the theoretical predictions. The main
reason for this discrepancy is the limited resolution of our
EMCCD camera. In order to generate the azimuthal intensity
plots, we use the narrow angular region of interest [26], the
minimum possible size of which is fixed by the pixel size of the
EMCCD camera. In the case of noncollinear down-conversion,
the intensities in the interferograms are concentrated at regions
away from the center. Therefore, the corresponding �Īout(φ)
plots have lesser angular resolution and thus they get estimated
to be wider than their true widths. This results in a progres-

sively lower estimate of the Schmidt numbers with increasing
noncollinearity.

Finally, we use Eq. (9) for studying how wp and L affect the
angular Schmidt number Ka . Figure 5(a) shows the theoretical
dependence of Ka on wp for fixed L, θp, and d. Figure 5(b)
shows the theoretical dependence of Ka on L for fixed wp, θp,
and d. We find that Ka increases as a function of wp while it
decreases as a function of L.

IV. CONCLUSION

In summary, we have derived in this paper an exact formula
for the angular Schmidt spectrum of OAM-entangled photons
produced by PDC. We have shown that our formula yields
the true theoretical spectrum without any convergence issue
as has been the case with the previously derived formulas.
Furthermore, we have used our theoretical formulation to
experimentally characterize the angular Schmidt spectrum for
noncollinear phase matching in PDC. The results reported in
this paper could be very relevant for the ongoing intensive
research efforts towards harnessing high-dimensional OAM
entanglement for quantum information applications [31,32].
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